Austromegabalanus psittacus barnacle shell structure and proteoglycan localization and functionality.
نویسندگان
چکیده
Comparative analyzes of biomineralization models have being crucial for the understanding of the functional properties of biominerals and the elucidation of the processes through which biomacromolecules control the synthesis and structural organization of inorganic mineral-based biomaterials. Among calcium carbonate-containing bioceramics, egg, mollusk and echinoderm shells, and crustacean carapaces, have being fairly well characterized. However, Thoraceca barnacles, although being crustacea, showing molting cycle, build a quite stable and heavily mineralized shell that completely surround the animal, which is for life firmly cemented to the substratum. This makes barnacles an interesting model for studying processes of biomineralization. Here we studied the main microstructural and ultrastructural features of Austromegabalanus psittacus barnacle shell, characterize the occurrence of specific proteoglycans (keratan-, dermatan- and chondroitin-6-sulfate proteoglycans) in different soluble and insoluble organic fractions extracted from the shell, and tested them for their ability to crystallize calcium carbonate in vitro. Our results indicate that, in the barnacle model, proteoglycans are good candidates for the modification of the calcite crystal morphology, although the cooperative effect of some additional proteins in the shell could not be excluded.
منابع مشابه
Microstructure and crystallographic-texture of giant barnacle (Austromegabalanus psittacus) shell.
Barnacle shell is a very complex and strong composite bioceramic composed of different structural units which consist of calcite 15 microcrystals of very uniform size. In the study reported herein, the microstructural organization of these units has been examinated in detail with optical and scanning electron microscopy, and X-ray diffraction techniques. These analyses showed that the external ...
متن کاملCharacterization of Two 20kDa-Cement Protein (cp20k) Homologues in Amphibalanus amphitrite
The barnacle, Amphibalanus amphitrite, is a common marine fouling organism. Understanding the mechanism of barnacle adhesion will be helpful in resolving the fouling problem. Barnacle cement is thought to play a key role in barnacle attachment. Although several adult barnacle cement proteins have been identified in Megabalanus rosa, little is known about their function in barnacle settlement. I...
متن کاملChemical Component and Proteomic Study of the Amphibalanus (= Balanus) amphitrite Shell
As typical biofoulers, barnacles possess hard shells and cause serious biofouling problems. In this study, we analyzed the protein component of the barnacle Amphibalanus (= Balanus) amphitrite shell using gel-based proteomics. The results revealed 52 proteins in the A. Amphitrite shell. Among them, 40 proteins were categorized into 11 functional groups based on KOG database, and the remaining 1...
متن کاملGrowth and development of the barnacle Amphibalanus amphitrite: time and spatially resolved structure and chemistry of the base plate
The radial growth and advancement of the adhesive interface to the substratum of many species of acorn barnacles occurs underwater and beneath an opaque, calcified shell. Here, the time-dependent growth processes involving various autofluorescent materials within the interface of live barnacles are imaged for the first time using 3D time-lapse confocal microscopy. Key features of the interface ...
متن کاملGingival neoplasm presenting as an ossifying epulis in a parrot cichlid fish (Hoplarchus psittacus)
This report describes the histopathological features of an ossifying epulis, measuring 1.5 × 1 × 1 cm in length, width and height, respectively, on the lingual surface of the lower jaw of a 2.5 year-old parrot cichlid (Hoplarchus psittacus) from a commercial aquarium. The tumor had appeared in the oral cavity three months prior to its introduction to the laboratory for diagnosis. Grossly, the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of structural biology
دوره 191 3 شماره
صفحات -
تاریخ انتشار 2015